
Abstract—This paper presents an experimentally 

demonstrated gradient-based multi-robot technique for 

adaptively navigating within a parameter field.  To implement 

this technique, simultaneous measurements of the parameter are 

made at different locations within the field by a spatially-

controlled cluster of mobile robots.  These measurements are 

shared in order to compute a local gradient of the field.  

Depending on the task to be achieved, the multi-robot cluster is 

directed with respect to this direction.  Moving in or opposite to 

the gradient direction allows efficient navigation to local 

maxima/minima in the field, a capability of interest for 

applications such as detecting pollution sources or the location of 

resource-starved areas.  Moving perpendicular to the gradient 

direction allows parameter contours to be navigated, a behavior 

useful for applications such as defining the extent of a field or 

establishing a safety perimeter at a defined field level.  This paper 

describes the multi-robot control technique which combines a full 

degree-of-freedom “cluster space” multi-robot controller with a 

gradient-based adaptive navigation capability.  Verification of 

the technique through field experiments using a fleet of three 

robotic kayaks is also presented.  Finally, a discussion of results, 

a review of challenges, and a review of ongoing and future work 

is presented. 

 
Index Terms—Cluster space control, autonomous surface 

vessel, gradient-based navigation, adaptive navigation. 

I. INTRODUCTION 

ULTI -robot systems have the potential to dramatically 

impact robotic applications through improved 

performance and the enabling of completely new capabilities.  

Alone, robots offer strength, speed, precision, repeatability, 

and the ability to withstand extreme environments.  Combined 

in a multi-robot system, additional advantages are possible, 

such as redundancy, increased throughput, expanded 

coverage/availability, and spatially-distributed sensing and 

actuation [1].  Multi-robot systems can support applications 

ranging from remote [2] and in situ sensing [3] to the physical 

manipulation of objects [4], and the domains for such 

applications include land, sea, air, and space [5]. 

One characterization of multi-robot systems is the degree to 

which their functions and spatial characteristics are 

coordinated.  Some applications loosely coordinate such 

characteristics, such as the open loop synchronization of pre-

positioned manipulators on an assembly line [6].  Applications 

requiring capabilities such as synoptic mapping, in which 

robot-based sensors are spatially distributed throughout a field 

of interest and collect data in a synchronized manner in order 

to represent the state of the field [7], may use closed loop 

spatial control to ensure high quality results.  Other 

applications may require even more integrated operation and 

relative position control, such as proposed sparse array space 

telescopes [8]. 

Our work focused on the highly integrated end of the control 

spectrum, with target applications that include active 

escorting/guarding [9], [10], object tracking, object 

manipulation [11], and sparse antenna arrays [12].  Given that 

these applications require active control of the relative spatial 

characteristics of the robot formation, we have developed a 

flexible and powerful formation-level control architecture, 

known as the Cluster Space formation control technique [13], 

which provides a suitable level of abstraction at the 

application-formation control interface. 

The work presented in this article focuses on the use of 

multiple, spatially-distributed robots to sense a spatially-

varying parameter of interest, estimate the local spatial 

gradient of this field, and then navigate with respect to this 

gradient.  This approach offers the ability to navigate with 

respect to possible features of interest, such as local 

maximum/minimum locations or perhaps along a specific 

parameter contour.  This is in contrast to traditional parameter 

mapping approaches in which a single platform systematically 

navigates through a region, often in a “mow-the-lawn” 

fashion, in order to map an entire area [14].  If the ultimate 

goal is to locate/perform gradient-related features/tasks, the 

multi-robot gradient-based mapping capability offers benefits 

such as faster identification of areas of interest and the ability 

to dynamically track these features in time-varying fields. 

There have been a number of examples of gradient-based 

navigation through a parameter field by a single robot through 

the use of bio-inspired control strategies.  In one system, a 

robot was built to follow the direction of an odor source [15].  

This was done using four anemometric and gas sensors to 

estimate the direction of airflow carrying the molecules of 

interest.  Given this bearing estimate, the robot moved towards 

the odor source using a control strategy inspired by how moths 

track pheromones [16], [17].  Another implemented example 

was executed by the Autonomous Benthic Explorer (ABE), an 

underwater robot used to find a specific location in a lake 

using a single beam sonar altimeter [18].  ABE’s motion 

control strategy was modeled after the chemotaxis behavior of 

E. coli [19], [20], using periods of random spatial motion 

during which the gradient was computed followed by 

gradient-referenced motion. In general, while gradient-based 

navigation was possible, these systems were limited by their 

small sensing regions/baselines and the resulting slow 

convergence that results from having to move over time in 

order to compute the local gradient [21].  More recently, 

another technique uses a sinusoidal perturbation of the sensed 

parameter to compute a local gradient, thereby supporting a 

source seeking behavior [22], [23]. 
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With respect to multi-robot approaches, Hayes et al. 

implemented a bio-inspired, multi-stage approach to localizing 

odor sources in which the robots first identified the existence 

of a plume, then moved towards the plume’s source, and 

finally located the source position [24].  In this work, a single 

robot  combined an outward spiraling motion in attempts to 

sense the binary presence of an odor (e.g., the sensed level 

was above or below a given threshold) with periodic “surges” 

of motion in the upstream direction, determined by a flow 

sensor, in order to move towards a source.  Multi-robot 

execution of this algorithm consisted of either a) using all 

robots to initially find a plume but then following the plume 

with only the first robot to locate it, or b) having upward-

surging robots command downwind robots and any robots 

with no plume information to surge in the direction of the 

commanding robot.  Although limited to binary plume 

information, rudimentary -robot collaboration, and verification 

via simulation and small scale lab-based experiments, this 

study demonstrated performance improvements of 25-40% 

time reductions in tracking a plume to its source, with the 

majority of performance improvement occurring with the 

addition of only one or two robots. 

Work by Biyik and Arcak demonstrated another approach in 

which a multi-robot formation was steered to the 

maxima/minima of a parameter field.  In this work [25], the 

leader alone performed extremum seeking by generating 

approximate gradients of the local field through the dithering 

of sensor position.  Using this approach to determine the 

desired bearing, additional vehicles simply followed this 

leader using passivity-based coordination rules.  This 

approach, which was verified via simulation but not hardware-

in-the-loop experimentation, showed that under certain 

conditions, the following vehicles responded only to the 

gradient motion, effectively filtering out the dither. 

Significant work by Leonard and various collaborators has 

explored, developed and simulated several gradient-based 

adaptive sampling strategies for small Autonomous 

Underwater Vehicle (AUV) fleets with the objective of 

detecting interesting features and tracking fronts in the marine 

environment [26]-[28].   In [29], the same team conducted real 

AUV experiments in Monterey Bay, CA to verify the 

performance of their core Virtual Bodies and Artificial 

Potentials (VBAP) formation-keeping architecture and to 

assess the feasibility of performing gradient-based maneuvers.  

Experimental results showed the ability to maintain adequate 

formation control to support gradient-based maneuvers, and 

through post-mission analysis and simulation, the team 

concluded that there was good potential to successfully 

implement gradient-based adaptive navigation.   

It is worth noting that gradient-based methods have 

shortcomings.  First, moving up or down the gradient is 

limited by local minima/maxima; if identifying global 

extremes is critical, augmented techniques are required to 

identify other peaks and valleys in the parameter field.  

Second, discontinuities in the field can yield the technique 

difficult if not impractical to implement.  Third, small 

gradients, particularly in the presence of noise, may be 

difficult to sense.  A common strategy to address this is to 

perform a local search (known as ‘casting’ in the biological 

literature) in order to re-acquire the gradient; this behavior has 

been observed, for example, in moths [30]. 

The work presented in this article describes an implemented 

technique for using a multi-robot formation to perform 

gradient estimation while moving through a scalar parameter 

field and to use the gradient estimate to adaptively navigate in 

realtime in order to locate and track features of interest.  Using 

three autonomous surface vessels operating in a marine 

environment, this system uses our previously developed 

Cluster Space multi-robot formation control architecture in 

order to spatially distribute the robots such that a reasonable 

gradient estimate is possible.  A new adaptive navigation 

control system acts as an outer control loop in order to steer 

the robot fleet in order to ascend/descend gradients or to track 

field contours with specific concentration levels.   

Compared to “mow-the-lawn” mapping approaches, our 

system enables identification and tracking of gradient-based 

features, even with dynamic fields, with significantly fewer 

operational resources (time, power, etc.).  Compared to the 

previously discussed single-robot gradient estimation 

strategies, our system provides realtime, continuous estimation 

of the gradient, ensuring faster response.  Perhaps most 

interesting, most of the previously reviewed strategies have 

only been explored via analysis and simulation; our system 

has been verified through hardware-in-the-loop experimental 

demonstration in a field setting.  Achieving these capabilities 

is now allowing us to focus on field applications with an 

established network of science collaborators in order to 

perform tasks such as identifying bathymetric features of 

interest to geologists, locating anoxic regions relevant to 

marine biological health, and isolating locations of pollutants. 

Section II of this paper reviews the cluster space multi-robot 

control approach.  Section III presents how the cluster space 

controller is augmented with an adaptive navigation outer 

control loop that estimates the local gradient and computes 

motion commands for the multi-robot cluster controller.  

Section IV reviews the design of the multi-kayak system that 

was used to demonstrate the technique during field 

experiments.  Section V presents field data demonstrating the 

functionality of the technique in the context of navigating with 

respect to bathymetric gradients.  Section VI reflects on the 

results of the experiments, and  highlights ongoing and future 

work designed to extend the presented technique.  Finally 

Section VII summarizes the work presented in this article.  

II. CLUSTER SPACE MULTIROBOT FRAMEWORK 

The cluster space control technique represents a group of 

robots as a virtual articulating kinematic mechanism that can 

be resized and reshaped as it moves through space [13].  The 

group of robots, termed a “cluster,” is assigned a cluster 

reference frame, and the pose of the cluster is represented by 

the location and orientation of this frame, the geometric shape 

of the cluster, and the relative orientations of each robot with 

respect to the cluster frame; these pose variables and their 

derivatives define the cluster state space for the system.  

Motions are specified in terms of these cluster parameters, 

making specification and monitoring simple for human 

operators and providing a natural level of abstraction for 

higher level controllers.  Furthermore, control compensation is 



computed with respect to the cluster variables, which provides 

well-behaved geometric motion even when individual robots 

may need to move in a highly nonlinear manner.  

With respect to other common formation approaches, the 

cluster technique has several distinct characteristics.  

Compared to many bio-inspired and “swarm” approaches [31], 

[32], cluster space control is a full-degree-of-freedom 

controller with a strong control-theoretic mathematical 

framework.  With respect to the virtual rigid body approach 

[33], [34], cluster space control explicitly provides for the 

time-varying geometry of the formation, and control 

computations are directly computed as opposed to being 

established through an algorithmic reasoning process [35].  

Compared to artificial potential field approaches, the proposed 

method does not rely on the generation of adequate potential 

functions to reach desired poses; rather, it allows for simple 

formation reconfiguration based on intuitive parameters [36].  

Finally, with respect to leader-follower techniques, cluster 

control does not require the designation of a specific leader 

and is more flexible in accommodating relative spatial 

requirements among robots [37], [38]. 

The benefits of cluster space control, however, do not come 

without drawbacks.  Depending on how it is implemented, the 

technique can be computationally expensive compared to 

many other methods, and the level of flexibility that it 

provides is unnecessary for many applications.  In addition, 

convenient shape descriptions can suffer from geometric 

singularities [39]; this can be automatically managed through 

state space switching, however this adds to the computational 

load. 

Our previous and ongoing work in cluster space control 

includes its implementation with both human pilots and 

automated trajectory controllers, use with both holonomic and 

non-holonomic vehicles, use with linear and non-linear 

controllers, implementation with both resolved rate and 

dynamic controllers, avoidance of obstacles, and experimental 

demonstration on land/sea/air systems with up to 6 robots 

[40], [41], [10].  Supporting analytic work has included proof 

of Lyapunov stability, dual-rate computational 

implementations, varying the level of (de-) centralization, and 

the formulation of hierarchical clusters of clusters [42], [43]. 

This following subsection defines the robot space and cluster 

space representations of a multi-robot system and introduces 

the kinematic transforms that relate the positions and 

velocities in these spaces.  The subsequent subsection reviews 

the inverse Jacobian control architecture, which is a typical 

way in which cluster space control is implemented.  A three-

robot planar cluster is used as the example throughout this 

section given that the experiments presented later in this paper 

use such a real-world cluster of robots. 

A. The Kinematic Formulation 

The general kinematic formulation for a cluster of n robots, 

each with m degrees of freedom, is provided in [13].  Here, we 

provide the specific formulation for a 3-robot planar system, 

as shown in Fig. 1, which we have used to demonstrate the 

gradient-based navigation technique.   

A conventional robot-oriented representation of this system 

consists of describing the system’s pose in terms of the 

position and orientation of each robot: 

 = (x1, y1, θ1, x2, y2, θ2, x3, y3, θ3)
T                 (1) 

 

where (xi,yi,θi) is the position and orientation of robot i for 

i=1,2,3 as defined within the global frame, {G}. 

 
Fig.  1.  A three robot cluster, showing a cluster space representation of pose: 
cluster location (xc, yc, θc), cluster shape (p, q, β), and relative robot 

orientations with respect to the cluster (Ø1, Ø2, Ø3).  

To consider the system as a cluster, a cluster reference frame 

{C} is defined; in this example, it is located at the centroid of 

the formation and oriented in the direction of Robot 1.  The 

shape of the cluster is naturally defined as a triangle, 

expressed in this case through a side-angle-side description of 

geometry.  Given this, the system’s cluster-oriented pose is:  

 

  = (xc, yc, θc, Ø1 ,Ø 2 ,Ø3 , p, q, β)T            (2) 

 

where the values (xc,yc) is the position and θc is the orientation 

of the cluster frame with respect to {G}, (p, q, β) quantify the 

side-angle-side description of the cluster’s shape, and (Ø1, Ø2, 

Ø3) denote the relative angle of each robot with respect to the 

cluster frame.  We note that, in general, the cluster space 

technique provides flexibility in how the cluster frame is 

assigned and how the cluster shape is defined; the wide range 

of options drives implementation issues such as the level of 

(de)centralization, computational complexity, and the nature 

of geometric singularities.  For a three-robot planar system, 

nine position variables represent the system’s degrees of 

freedom; accordingly, both  and  are nine-element vectors. 

We can define a set of position kinematic transforms 

expressing cluster-oriented pose variables in terms of robot-

oriented pose variables and vice versa: 

 

 =KIN(G )=                 (3) 

 

 =INVKIN( )=                  (4) 



Taking the derivative of equations (3) and (4), system 

velocities can be related to one another through the use of a 

linear time-varying Jacobian matrix, J, as shown in equations 

(5) and (6): 

 

=                              (5) 

 

 =                            (6) 

 

For our three robot system, the forward position transforms, 

=KIN(
G

), are provided in the Appendix.  Limited space 

prevents expression of the remaining sets of equations. 

B. The Cluster Space Formation Control Architecture 

With the formal kinematics defined, the controller is 

composed in such a manner that the desired motions are 

specified and control compensations are computed in the 

cluster space.  The resulting feedback control architecture is 

independent of the style of control function used (e.g., linear, 

non-linear, model-based, etc.) or of how the desired state 

values are set (realtime pilot inputs, trajectory generator, 

inputs from a higher level controller, etc.).   

For the gradient-based navigation capability achieved in this 

research project, a cluster space linear PID resolved rate 

controller was used in order to generate an instantaneous 

cluster velocity command, .  As shown in Fig. 2, this was 

converted to equivalent robot-specific velocity commands 

through the use of the inverse Jacobian transform, J
-1

, as 

defined in equation (6).  Sensed robot positions were 

converted to cluster position estimates through the use of the 

forward kinematic functions, defined in equations (3) and (5). 

Although it was not used for this particular research project, 

we note that we have developed and implemented dynamic 

versions of this cluster space control architecture in which the 

controller specifies cluster space forces and torques; these are 

transformed by J
T
 to determine the instantaneous robot-

specific control forces and torques to be applied [42]. 

Non-holonomic drive constraints for the individual robots, 

such as the ones use for experimentation in this project, limits 

the freedom of arbitrarily specifying the Øi states, which are 

the relative angles of each robot with respect to the cluster 

frame.  A simple way to accommodate these constraints is to 

use a robot-level heading controller that orients the robot in 

the direction of its commanded velocity vector as specified by 

the cluster space controller; this is the approach that was used 

for the experiments reported in Section V.  A more 

sophisticated approach achieves the same result but through 

the explicit handing of the non-holonomic constraints within 

the cluster space controller [42]. 

III. GRADIENT-BASED MULTI-ROBOT NAVIGATION 

For this research project, we seek to adaptively navigate 

with respect to the gradient of a scalar parameter field, P(x,y), 

in order to perform functions such as efficiently moving to 

local minima/maxima or moving along specific concentration 

contours of the field.  Examples of parameters of interest 

include quantities such as temperature and the concentration 

of pollutants or hazardous materials.  In general, the precise 

nature of P(x,y) is unknown, although some assumptions may 

be reasonable regarding the magnitude of the gradient and the 

spatial frequencies within the field. 

To adaptively navigate, we first estimate the direction of the 

local gradient using real-time measurements made by sensors 

on each of the distributed robots.  Given this estimate, we then 

steer the cluster with respect to the gradient in order to 

navigate in a manner appropriate to the given task. 

 

 

Fig.  2.   The implemented gradient-based cluster space control architecture.  The robot cluster is shown on the right, with each robot capable of responding to a 

robot-specific velocity command.  The cluster space control layer is shown in the middle.  This controller computes an error-drive cluster velocity command, 

which is converted to robot-specific velocity commands via the inverse Jacobian transform. The research presented in this paper focuses on the inclusion of the 

adaptive navigation layer, shown in the grey box on the left.  This controller estimates the gradient direction, determines the desired bearing for the cluster, and 
specifies the appropriate cluster state space set-points to achieve the desired navigation task. 



A. Computing the Gradient 

To understand how the direction of the local gradient is 

estimated, consider the diagrams in Fig. 3.  In Fig 3a, a planar 

region of robot motion is shown.  The scalar parameter field is 

represented by contours in the planar region and also as a 

surface with a height at any point above the plane equal to the 

value of the scalar field at that point, z = P(x,y).  The 

maximum point in the scalar field is indicated by a star in both 

the plane and on the three dimensional parameter surface.   

At a given point in time, the three robotic vehicles are at 

specific locations in the planar region, as denoted by the 

circled locations.  Each vehicle samples the parameter field at 

its own location such that it can be envisioned to be located on 

the virtual parameter surface.  Given the use of three vehicles 

to create an instantaneous estimate of the field, the samples 

effectively establish a planar approximation of the parameter 

surface, ),(ˆˆ yxPz , in the vicinity of the cluster.   

 

 

 
(a) Three robots sample the scalar parameter field P(x,y), thereby creating 

a local approximation in the form of the plane ),(ˆ yxP . 

 

 

 
 

(b) The three robots define vectors within the planar field approximation, 

allowing the direction of the field gradient to be computed. 
 

Fig.  3.  The three robots within the cluster compute the field’s gradient based 

on their locations and samples of the scalar parameter field. 

In Fig. 3b, the robots are shown again, both in the X-Y plane 

of motion and in the approximated planar parameter surface, 

),(ˆˆ yxPz , at the locations (xi, yi, zi) for i=1,2,3, where (xi, 

yi) is the location of robot i and zi is the measurement of the 

field at this point.  Because the approximated field is planar, 

the contour lines are now approximated as lines in the local 

region, as now shown in the X-Y plane of motion.  

Given the locations of the robots on the virtual surface, we 

construct the vectors 12 and 13, as shown in the Fig. 3b, 

running from the projected robot 1 location to the projected 

locations of robots 2 and 3, respectively.  To compute the 

direction of the field’s gradient, shown in the X-Y plane as 

P̂ , the cross product   is computed and 

projected into the X-Y plane.  The resulting P̂  vector points 

in the direction of greatest parameter increase, and it is 

perpendicular to the local scalar field contour lines. 

To summarize this estimation approach mathematically: 
 

                        (7) 

 

           (8) 

 

            (9) 

 

P̂ =[Nx,Ny]
T           (10) 

 

 bgrad = pi/2 - ATAN2(Ny,Nx)                 (11) 

 

where Nx and Ny are the x- and y-components of N, the 

surface normal vector; bgrad is the bearing of the field gradient 

(e.g., the direction of maximum parameter increase), 

expressed as a heading angle in {G}.   

For contour following, the location of the cluster in the 

parameter field must be approximated.  Given that the origin 

of {C} represents the cluster’s location and given the planar 

assumption of the field in the local area, the parameter field 

value at the cluster’s location is ),(ˆˆ
ccc yxPz . 

B. Gradient-Based Navigation 

With an estimate of the bearing of the field gradient now 

available, this knowledge can be incorporated into the 

cluster’s realtime navigation strategy in order to adaptively 

drive the cluster as a function of the sensed environment.  

Although a variety of navigation strategies can be considered, 

here we focus on two specific strategies which we believe 

hold specific promise for applications we are pursuing: a) 

navigating to local minima/maxima in the field, and b) 

navigating along specific contour levels within the field. 

To navigate to the local minimum or maximum, bgrad 

provides the heading of the greatest rate of parameter increase.  

The opposite direction is the heading of the greatest rate of 

parameter decrease.  Accordingly, for gradient 

climbing/descent mode, the desired bearing of travel is: 

 

bdes = bgrad + (d * π)                        (12) 

where d = 0 for gradient ascent and d = 1 for gradient descent.  

We note that this navigation strategy simply directs the cluster 

along the local direction of maximum/minimum parameter 

change; there is no attempt to remain on any specific gradient 

line. 



Navigating along a field contour requires more 

sophistication given that this strategy implies note just the 

desire to move in the direction of the contours but also the 

desire to move to and follow a specific contour line with a 

given parameter value.  First, the direction of the contour lines 

must be determined.  Given that contour lines are 

perpendicular to the gradient, the bearing of what we term the 

Clockwise (CW) contour direction (which implies a CW 

rotation around the parameter field if the field was a simple 

single peak) has a value of [bgrad - (π/2)].  Similarly, the 

bearing of the contour for Counter Clockwise (CCW) travel is 

[bgrad + (π/2)].   

To follow a specific contour of value zdes, a simple cross-

track controller is used, as is depicted in Fig 4.  This strategy 

specifies a heading set point equal to the desired contour 

bearing plus a corrective bearing term proportional to the cross 

track error, (zdes – zc), which biases travel towards the desired 

contour line.  The corrective term is limited to 90° such that 

the cluster heads directly towards the contour line in a 

perpendicular fashion for large deviations.  Mathematically: 

 

θdes = bgrad +                                                           (13) 

                  

d * {sgn(zdes-zc) * min[Kct * ||zdes-zc||, π/2] – π/2} 

 

where d is 1 for CW navigation and -1 for CCW navigation, 

and Kct is the cross-track correction gain.  This path-following 

approach is similar to that used for an operational single boat 

system that follows paths in order to perform bathymetric 

mapping applications [14]. 

 

C. Cluster Turning Options 

In our work to date, we have specified a constant shape, size, 

and forward speed for the cluster and have simply steered the 

cluster in order to travel along the desired bearing.  Given a 

desired bearing based on the navigation strategy as formulated 

in Sec IIIB, there are two distinct options for how the cluster 

can be commanded to move, as depicted in Fig. 5.  

The first strategy consists of constraining the cluster’s 

translational velocity to act only in a single direction with 

respect to the cluster frame and to accommodate lateral travel 

by turning the aggregate cluster.  For example, the cluster’s 

translational velocity can be constrained to act only in the 

cluster frame’s y-direction (e.g., ) and the 

cluster is turned by aligning the cluster heading with the 

desired bearing ( ) as determined in Sec IIIB.  

This establishes a non-holonomic-like aggregate drive 

characteristic for the cluster in which one “side” of the cluster 

is generally aligned with the direction of travel and there is no 

“side-slip” component of cluster velocity. 

Alternatively, the second strategy allows the cluster to adopt 

a translational velocity with components in both the x- and y- 

cluster frame directions.  This is achieved by varying the ratio 

, given a constant translational cluster speed, , in 

order to align the cluster’s velocity vector with the desired 

bearing.  This is done independently of the cluster’s heading, 

which may be kept constant (as shown in Fig.  5) or oriented 

based on some independent criteria.  The effect of this motion 

strategy is to provide a holonomic-like side-slip capability for 

the overall cluster, which in practice has been found to be 

more agile when turning. 

 
 
Fig.  4.  Cluster contour following strategy (for clarity, only CW-related 
quantities are shown).  

 
 
Fig.  5.  Examples of Non-holonomic cluster rotation (left) and Holonomic 

cluster rotation (right). 

 

D. The Integrated Controller 

The previous sub-sections described how the field gradient 

is estimated (Sec IIIA), how the navigation strategy (gradient 

climbing/descending or CW/CCW contour-following) exploits 

this knowledge to specify a desired bearing for cluster travel 

(Sec IIIB), and how the cluster turn strategy (rotate or side-

slip) incorporates the desired bearing into cluster state space 

set-points for the cluster space controller.  This information is 

used to specify set-points for the cluster variables xc, yc, θc, 

and their derivatives.  Set-points for the cluster shape variables 

are independently specified given the current policy of 

constant size and shape.  Finally, the relative rotation 

variables, Øi, are not independently specified given the non-

holonomic motion constraints for the individual robots. 

The shaded portion of Fig. 2 shows how these cluster space 

set-points are provided to the cluster space control architecture 

by the adaptive navigation system.   

Simulation work was performed to verify the controller and 

to demonstrate several gradient-based maneuvers, as reported 

in [44].  Furthermore, simulation was used to evaluate the 

effects of noise, gradient strength, and formation-keeping 

capability on performance, as summarized in Section VI. 



IV. MULTI-KAYAK EXPERIMENTAL TESTBED 

To experimentally demonstrate the gradient-based adaptive 

control system, an existing set of three robotic kayaks was 

used.  These kayaks were used to sense and navigate with 

respect to the underwater topography, with bathymetric depth 

serving as the parameter of interest.  To do this, the kayaks 

were outfitted with simple, single beam sonar sensors in order 

to perform local depth measurements.  These measurements 

and the previously-described adaptive navigation control 

elements were integrated with the fleet’s existing cluster space 

control system. 

The baseline multi-kayak system is a low-cost, student-

developed testbed that has existed for several years and that 

has been used to demonstrate a variety of multi-robot 

navigation capabilities with up to six boats [10].  Each boat is 

identical, with a commercially available “sit-on-top” kayak 

serving as the hull.  The kayak is propelled by two Minn Kota 

Endura 30 trolling motors arranged in a differential drive 

configuration and controlled by a Roboteq AX3500 motor 

controller.  These motors are powered by a marine deep-cycle 

battery, allowing three hours of standard operations and 

speeds up to five knots.  Simple aluminum and PVC chassis 

elements attach electronic components to the hull and provide 

for rapid assembly of the system in the field.  

Each kayak uses a Garmin 18 differential GPS unit and a 

digital Devantech CMPS30 compass for position sensing, 

providing sensing accuracy on the order of +/- 3 m and 3°, 

respectively.  For depth readings, a Garmin Intelleducer sonar 

provides 1 Hz data up to a maximum depth of 275 m with an 

accuracy of +/- 1 m.  Two on-board BasicX microcontrollers 

provide basic data acquisition and formatting. They also 

handle the parsing functions and serve as an interface between 

the on-board sensors / actuators and a wireless communication 

system that integrates the system with the off-board cluster 

control system.  An isolated 12 volt battery system provides 

power to the sensor, computing, and communications 

components. 

 

 
Fig.  6.  The three kayak cluster operating in Stevens Creek Reservoir, CA. 

 

Each kayak is wirelessly connected to a remote control 

station, which executes the adaptive navigation controller and 

serves as an operator interface to the system.  The wireless 

system uses two Metrocom Ricochet transceivers capable of 

128 Kbps speeds and robust communications up to 1.5 miles. 

The station consists of a standard Windows-based laptop 

computer running the controller, which executes within a 

Matlab/Simulink environment.  The DataTurbine streaming 

software connects the Simulink controller with a simple serial 

port application that manages the interface with the wireless 

communication equipment.  We note that this software 

architecture is used extensively by the research team for 

several other low-cost multi-robot testbeds; although it has 

performance limitations, it’s capability is more than sufficient 

for the control requirements of these systems, it is easily 

maintained and configured by a student research team, and it 

provides simple integration with a variety of other networked 

tools, interfaces and simulators available to the team. 

 

V. EXPERIMENTAL RESULTS  

To experimentally verify the gradient-based adaptive 

navigation technique, distributed depth measurements were 

made in order to perform tasks such as navigating up/down 

underwater slopes and following bathymetric contours.  Depth 

was used as the parameter of interest for initial field testing 

because such fields are static, they are easily measured using 

the existing multi-robot system, and we can create high 

resolution truth data using an alternate system that performs 

science-grade bathymetric mapping [14]. 

Experiments were performed at two sites.  The first was 

Stevens Creek Reservoir in Cupertino, CA, which is a routine 

test location for various marine robotic systems developed at 

Santa Clara University.  As a man-made entity, the 

bathymetric profile is a simple concave shape with contours 

that follow the coastline and depths that are completely in 

range of the sonar units on each boat.  In addition, the main 

part of this reservoir had been extensively mapped by the team 

prior to navigation experiments as part of a separate research 

effort.  The second site was in Lake Tahoe approximately a 

half mile off the coast of Camp Richardson on the 

Southwestern shore of the Lake, a location known to have a 

descending ravine but for which detailed maps were 

unavailable.  After the experiments were executed, the team 

used the Lab’s bathymetric mapping system to map a portion 

of the region of operation in order to verify results. 

Experiments were performed to verify both gradient 

climbing/descent as well as contour following.  In addition, 

both cluster motion modes, nonholonomic-like and 

holonomic-like, were demonstrated; however, in this paper we 

only present holonomic-like maneuvers given our preference 

for that option and limitations on space. 

A. Steven’s Creek Contour Following Demonstration  

The Steven’s Creek tests were run during algorithm 

development in order to iteratively test and improve the 

control system.  The lack of long paths of depth change 

prohibited compelling demonstrations of gradient 

ascent/descent.  However, the man-made topography provided 

an outstanding venue for demonstrating the contour-following 

capability.  Fig. 7 shows the result of such a contour-following 

experiment, with the cluster moving counter-clockwise from 

location A to location B, around the northern edge of the 

reservoir, following a depth value of z = 11.5 m while 

maintaining a desired shape of [p ,q , ] = [18 m, 18 m, 90°].  

Fig. 8 shows the precise behavior of the cluster during this 

experiment.  In Fig. 8(a), the sensor data from each robot and 

the computed centroid depth are shown.  As can be seen, the 

cluster centroid depth successfully tracks the desired value of 

11.5 m with an rms error of 1.2 m.  Fig. 8(b) and Fig. 8(c)  



 

 
Fig.  7.  The track of the kayak cluster during a holonomic contour following 
operation in Aug 2012 at Stevens Creek Reservoir, CA.  A depth contour of 

11.5 m was specified, with the cluster commanded to maintain a triangular 

formation of (p, q, ) = [18 m, 18 m, 90°].  
 

 
(a) The time response of robot depths, with the centroid depth maintained at 

11.5m. 
 

 
(b) The time response of cluster shape, , with a desired value of 90 degrees. 

 

 
(c) The time response of cluster size parameters, p and q, with a desired value 

of 18.5 m for each. 

 

Fig.  8.  Time histories of a contour following operation in Aug 2012 at 

Stevens Creek Reservoir, CA. 

 
Fig.  9.  The track of the kayak cluster during two separate operations in Aug. 

2012 in Lake Tahoe, CA.  Tracks A-B show a holonomic gradient descent 
operation and tracks C-D show a holonomic contour following operation.  

 

indicate the ability of the cluster to maintain its specified 

shape  of [p, q, ] = [18 m, 18 m, 90°]  during  this  contour-

following operation.  Shape, , is maintained with an rms error 

of 13.1°, and the size parameters p and q are controlled to 

within an rms error of 3.4 m and 4.6 m, respectively.  

Formation-keeping performance and its impact on adaptive 

navigation performance is discussed in the next section. 

B. Lake Tahoe 

The Lake Tahoe tests were executed in the general area in 

which a shallow, descending ravine was known to exist, but 

for which there was no available high resolution bathymetric 

data.  Once the experiments were executed, the team used a 

different automated mapping system to create the bathymetric 

data used for verification.  Fig. 9 shows the paths of the cluster 

robots superimposed on this bathymetric data for two different 

experimental runs. The tracks running from point A to point B 

in Fig. 9 show how the cluster moved in response to a 

command to descend the local gradient while maintaining a 

shape of [p, q, ] = [30 m, 30 m, 90°].  The partial bathymetric 

data upon which the paths are overlaid show that the cluster 

successfully performs this task.   

More precisely, Fig. 10 shows time history data for various 

sensed parameters during this maneuver.  In Fig. 10(a), the 

depth data from each robot is shown; as expected, the data 

shows steadily increasing depth as the cluster descends the 

gradient.  During the maneuver, this data is used to compute 

the bearing of maximum descent and the cluster is steered to 

that bearing.  Fig. 10(b) shows the bearing error over time as 

the cluster attempts to track the direction of maximum 

descent.  Once the initial transient dies out, this steering 

maneuver is accomplished with an rms error of 6.1°.  Finally, 

Fig. 10(c) and 10(d) show the degree to which cluster shape is 

maintained during the maneuver.  Shape, , is maintained  to 

its desired value of 90° with an rms error of 13.6°.  The cluster 

size parameters, p and q, are controlled to within an rms error  



 
(a) Time histories of robot depth and centroid depth, showing a steady 

gradient descent. 

 
(b) Error between the estimated gradient and the cluster’s direction of travel. 

 

 
(c) Time history of shape, , with a desired value of 90°. 

 

 
(d) The time response of cluster size parameters, p and q, with a desired value 

of 30 m for each. 
 

Fig. 10.  Time histories for a gradient descent operation in Aug 2012 in Lake 

Tahoe, CA. 
 

of 7.0 m and 6.1 m, respectively, of their desired values of 30 

m.  The impact of formation-keeping performance on adaptive 

navigation functionality is discussed in the next section. 

In Fig. 9, the tracks running from point C to point D show 

robot motion when the cluster was commanded to follow a 

CCW contour of z = 33 m while maintaining a shape of [p ,q,  

] = [30 m, 30 m, 90°].  As  can  be  seen,  the  cluster  moves 

along a topographic contour as expected.  Fig. 11 shows the 

precise behavior of the cluster during this experiment.  In    

Fig. 11(a), the sensor data from each robot is shown.  After an 

initial transient, the robots descend from a depth of about 17 m 

to the desired parameter value of 33 m.  At about t = 200 sec,  

 
(a) Time histories of robot depth and centroid depth, showing a steady 

gradient tracking path. 

 
(b) Error between the estimated gradient and the cluster’s direction of travel 

 
(c) Time history of shape, , with a desired value of 90°. 

 

 
(d) Time history of size, p and q, with a desired value of 30 m for both. 

 
Fig.  11.  Time histories for a gradient tracking operation in Aug. 2012 in 

Lake Tahoe, CA. 
 

the centroid of the cluster reaches the desired parameter value 

and follows that contour with an rms error of 0.9 m.  The 

ability to track the gradient is also characterized in Fig. 11(b), 

which shows the computed instantaneous bearing of the 

contour and the travel bearing of the cluster; the cluster 

follows the contour bearing with an rms error of 8.9°.  

Figures 11(c) and 11(d), show the degree to which cluster 

shape is maintained during the contour following maneuver.  

Shape, , maintains its desired value with an rms error of 

15.3°.  The cluster size parameters p and q are controlled to 

within an rms error of 7.3 m and 6.7 m, respectively. 



VI. DISCUSSION OF RESULTS 

The previous section provides positive experimental 

verification of the system’s ability to perform gradient-based 

navigation for the purposes of descending gradients and 

following contours.  That said, there are a number of 

interesting issues relating to the implementation of this 

capability both with the inner-loop cluster controller as well as 

with the outer-loop adaptive navigation process. 

A. Formation Keeping Performance 

 With respect to performance of the inner loop cluster 

controller, shown in Figs. 8, 10 and 11, it is apparent that high 

precision control has not been achieved.  One contributing 

factor is the quality of navigation sensors being used.  The 

depth sensors have a +/- 1m resolution, and the GPS sensors 

are limited to +/- 3 m of accuracy; performance could be 

improved through the use of a filtering or estimation process.  

Furthermore, a very simple proportional, resolved rate 

controller was used; performance could be enhanced through 

the addition of integral control, the use of a nonlinear 

controller, and/or the use of a true dynamic controller, all of 

which we have implemented in previous investigations [42].  

Nevertheless, this linear controller was more than capable 

enough to provide the level of performance necessary for the 

adaptive navigation loop to function well.  As discussed next, 

this is largely due to the insensitivity of gradient estimation 

over the error ranges encountered for the system (e.g., cluster 

shape was kept in its benign range, and a slightly larger than 

desired cluster may have even improved gradient estimation). 

B. Adaptive Navigation Performance 

Beyond sensing or control limitations, adaptive navigation 

has been implemented to date with a constant cluster 

geometry.  From supporting simulation work and ad-hoc field 

tests, it is clear that the selection of the cluster’s shape and size 

can significantly affect performance given the magnitude of 

the gradient, the presence of noise, and the structure (shape, 

frequency content, etc.) of the parameter field. 

To demonstrate this, we considered the performance of a 

simple turn maneuver within a simple inclined, planar scalar 

field, assuming noisy sensor readings that approximated the 

+/- 1 m magnitude errors that we experience with our depth 

sensors.  A series of simulations were run in which the cluster 

size, (p,q), was varied while holding the shape constant at 

=90°.  Fig. 12 summarizes the results of this exercise for 

three different slopes of the planar scalar field.   

Two predominant effects can be seen.  First, performance 

improves dramatically as the slope of the scalar field 

increases.  Second, as size increases, performance also 

improves.  Both of these results are due to the same 

phenomena.  Because the gradient estimate relies on the scalar 

differences across the cluster, in the presence of noise, larger 

scalar field differences across the cluster lead to a smaller 

noise impact.  Both a more prominent scalar field gradient and 

larger clusters lead to larger scalar field differences.  We note 

that the rapidly decreasing performance (e.g., increasing rms 

errors) at very small cluster sizes are due predominantly to 

nearing a singular point in the cluster geometry (which occurs 

when two or more robots are at the same location), which 

leads to computational amplification of errors [35]. 

 

 
Fig.  12.  Characterization of cluster turning performance as a function of 

cluster size and the magnitude of the scalar field gradient. 

 

Similar simulations show the effect of cluster shape, , on 

the ability of the cluster to navigate with respect to gradients.  

This result showed satisfactory results over most of the range 

of , except in the vicinity of =0° and =180°.  In these 

configurations, the triangular cluster becomes a straight line 

leading to the loss of gradient information in one of the two 

sensing degrees of freedom.   

C. Comparison To Other Gradient-Based Navigation 

Methods 

As previously mentioned, multi-robot gradient-estimation 

allows for faster and more responsive adaptive navigation than 

the reviewed techniques relying on a single robot for gradient 

estimation.  This is because a single robot must take additional 

time to perform the spatial sampling necessary to generate a 

gradient estimate; this approach is further challenged if the 

field is time-varying.   

Compared to the more sophisticated multi-robot estimation 

techniques explored by Leonard et al., we first note that we 

have experimentally implemented our system.  Our system 

adaptively navigates by continuous updating fleet velocity set-

points in realtime; because the Leonard group’s work focuses 

on underwater robots that are usually out of communication 

contact, their approach proposes to adaptively navigate by 

replanning and periodically reloading waypoint-based 

trajectories that the AUVs would then execute in isolation 

[27].  Finally, relevant to adaptive navigation robustness to 

formation errors, we note that our surface position errors of a 

few meters is orders of magnitudes less than the simulated 

errors of 100’s and at times 1,000’s of meters of position 

errors achieved by Leonard’s group; their work showed that 

their adaptive navigation approach is still feasible even with 

errors of this magnitude [29]. 

D. Future Work 

Of course, a significant challenge remains for fields with a 

more complex spatial structure.  In our current three-robot 

implementation, fields are approximated as being locally 

planar; when this approximation is poor, performance decays.  

To date, we have avoided this by operating in conditions such 

that cluster size was much smaller than the wavelength of any 

predominant parameter variation.  

We have several initiatives to extend this adaptive 

navigation work in multiple ways.  Regarding control system 



performance, estimation and filtering techniques will be 

adopted to enhance performance given sensor noise; similarly, 

a model-based dynamic cluster space controller could be used 

[42].  In terms of field systems, we will soon be re-equipping 

the kayak fleet with marine sensors in order to perform several 

environmentally-oriented missions of interest to our science 

partners.  Examples of these include identifying anoxic 

regions in estuaries (oxygen minima, in partnership with the 

Monterey Bay Aquarium Research Institute), finding and 

navigating “up” pollutant plumes along the coast (such as 

nitrogen from fertilizer run-off, in partnership with scientists 

from NOAA), and finding specific underwater topographic 

features (such as the tips of underwater glacial moraines, in 

partnership with geologists from the U.S. Geological Survey). 

We are also extending conceptual elements of this work.  

This includes developing methods for dynamically reshaping 

the cluster to adapt to the spatial frequency content within the 

parameter field.  It also includes how to employ and 

geometrically control additional robots in order to effectively 

perform gradient-based navigation.  We also plan to explore 

adaptive navigation within time-varying parameter fields and 

to address current limitations relating to being captured by 

local extrema.  We also plan to apply the adaptive navigation 

technique to different domains through the use of terrestrial, 

aerial and underwater robots, given that we have multi-robot 

testbeds for each.  These extensions include the estimation and 

navigation of gradients in three-dimensional volumes.  

Identifying, finding the sources of (gradient following) and 

exploring the extent of (via contour following) plumes in 

aerial and underwater environments are specific missions that 

we have been requested to support using our techniques.  

Beyond adaptive navigation, we continue to develop the 

theoretical elements of our cluster control technique through 

the development of hierarchical cluster-of-clusters constructs 

and of propagation algorithms to dynamically generate the 

kinematic transforms for arbitrary cluster state space 

definitions.  We are also using the cluster space control 

architecture as the foundation of other task-specific controllers 

in order to achieve functions for enabling reconfigurable 

sparse antenna arrays [12], for implementing mobile multi-

static tracking networks and for manipulating objects. 

VII. CONCLUSION 

This paper presents an experimentally demonstrated multi-

robot control architecture that uses realtime estimates of 

parameter gradients to adaptively drive a cluster of robots 

relative to features within a sensed parameter field.  

Distributed measurements of the field are taken and used to 

compute the field’s gradient and steering setpoints are 

generated for the aggregate system in order to perform 

functions such as ascending/descending the gradient to find 

local maxima/minima and following contours in order to 

explore the extent of the field.   

The system’s architecture uses a cluster space controller as 

an inner control loop, with the gradient-based adaptive 

navigation controller serving as an outer control loop.  The 

functionality of this controller has been verified through field 

experiments using three robotic kayaks and a centralized off-

board control computer.  These kayaks operate in a plane and 

sense the bathymetric depth field below them.  Experiments 

demonstrate the ability of the three-robot cluster to follow 

gradients (drive the cluster to deeper water) and contours 

(drive the cluster along topographic ridges).  Ongoing and 

future work is extending this technique to accommodate larger 

robotic clusters, more complex parameter fields, and three-

dimensional fields appropriate for aerial and underwater 

applications. 

APPENDIX 

The forward position kinematics for the 3-robot planar system used in this 

experiment are developed in detail in [13].  These relationships are given by: 
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where: 
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